OLLSCOIL NA hEIREANN
THE NATIONAL UNIVERSITY OQF IRELAND, CORK

COLAISTE NA hOLLSCOILE, CORCAIGH
UNIVERSITY COLLEGE, CORK

SUMMER EXAMINATIONS 2014

CS4092: Special Topics in Computing I
(Algorithms and Linear Data Structures)

Professor lan Gent
FProfessor B. (O’'Sullivan
Dr K. T. Herley

Answer all questions
Total marks available: 100%

1.5 Hours
About 1.11 percent per mimite

PLEASE DO NOT TURN THIS PAGE UNTIL INSTRUCTED TO DO 50
ENSURE THAT YOU HAVE THE CORRECT EXAM PAPER

Page 1 of 5



Question 1 [{05F]

(i) Write a fragment of Java using Map/ArrayBasedMap that declares and creates a map
object named nuns, populates the map with the numbers from 1 to 100 inclusive (as keys)
and then removes all those numbers divisible by 1T (fe. 17,3451, ---). (&5

(ii) Give a pseudocode fragment that takes the contents of a quene (ADT Cueue) and reverses
the order of the items contained within it. You may make use of an additional ADT from
{Stack, Queue, List Map}, if you wish. (&%)

(iii) The incomplete non-recursive binary search shown is intended to return the index within
,&r’fﬁy S’that contains the search key k (or “index” -1 if the search key is not present).

‘Toamplete the algorithm by providing appropriate pseudocode for the placebolders labelled
ete. (8%)
Algorithm GinarySearch(s, k):
loar 0
high «5.size() - I
while El do

mid = |_,.‘iJ
midEey — S{mid|
if k = midKey then

return

else

if k <« miulKey then
high —mid —1

else

return —1

(iv) Consider an implementation of ADT List using a left-justified array representation based
on the [ollowing instance variable declarations, where Elt Type stands for the element type
of the items in the list.

private EltType clements[];
private int numElts:

(3ive a complete implementation for the operation remove. (8%

{v) State the number of comparisons completed during the execution of the following algorithm
when applied to an array X of length n. Justify your reasoning carefully. (89

Algorithm BS(X, o)

5 1
while 5 < n do
curt = 0

while curr < n—1 do
next = curr <= 1
currEll = X[curr]
nextElt = X[next)
if currElt > nextElt then
Xleure] = pextElL

Xloext] = enrrElL
curr +—curr + 1
g+l

Page 2 of 5



Question 2 [30%] Give a complete Java implementation [rom scrateh for an enhanced version of
the traditional quene ADT that includes all the usual ADT operations ag well as the following:

delete(val): Remove from the queune all elements that equal the specified value; return
the number of deletions made.  Input: Ellype; Oulpul: ind,

Your implementation must respect the following conditions:
1. it must be based on the concept of a deubly-linked list and
2. it must be capable of housing elements of any {comparable) data type.

You do not need to provide code for an interface nor for a node elass.

Question 3 [30%]

(i) The following recursive algorithm segregates the contents of A[[f..r] (the segment of array
A between indices f and r inclusive) so that all the values less than or equal to & appear
to the left of those greater than .

Algorithm Split{A, x, £, )
if r < T then
return
else
if AJf] <x then
Split{A, x, f=I1, 1)
alaa ¥ 3
if Alr] > x then
Split{a, x, f, 1—1)
else 3 &
temp = Afl] 3
JA[f] = AR
+ Alr]= temp
Split (A, x, f+1, r—1)
b la
Draw a recursion tree to show the execution of Split (X, 5, 0, 7) where the array contains

[3.8.4,1,6,5,2,7] initially. Show the state of the array and the values of f and r at each

stage. {69
{ii) Argue that for any array A of length n, the number of ealls to Split arising from
Sphit(A, x, 0, n—1} for any «x is at most n + L. (62%)

(iii) Show how the algorithm may be modified to produce a varant Split2 so that
Split2{A, x, [, r) not only partitions the elements in the manner of Split but also returns
the number of values in A|f..r] that are less than or equal to x. HES
(iv) Based on the Split2 algorithm, write a recursive sorting algorithm (in pseudocode) that
takes an interval of an array A[f..r| and that re-arranges the contents so that they appear
in increasing order left to right. (9%

Pape 3 of 5



T
e= 2000 D)

| Sununary

| Cremeeal Notaos | ——

L. All of the “container” ADUs (Stack, Quene, List, Map,
Mriority Quete aad Set) support the following opera-
Lions,

simef b: Return mumber of items in the container. Mmput!
Mone; Chetput; int.

isEmpty () Return boolean indicating i1 the container
is conpty. Ingut: None; Chutput: boolean.

2=

. The GT and Java Collections formunlations make nse of
exeplions Losigual the ocourance of an AT crror such
a5 the attempt to pop from an empty stack, Our for-
mudation makes no nse of exeptions, but smply aborts
pﬁ}ETﬂTI’l E:{L‘{!l]i-i.[]]l “"l'l{!l! E'I.I(.'J'i ikl ETrr iE CILL'(.ILlJlti:!'L'd..

A mee the shect entithad “ALFT Comparison Table” for a
mire detailed comparison of our AD¥Is and their GT
nned Java Collections counterperts,

A stack is A container capable of holding a mmmber of objects
subject to a LIFO {last-in, first-out) cdiscipline, It supports
thie tollowing operations.

pushio): Iusert object o at top of stack. feput: B Chetpud:
Mo,

g b Bemowe wod returo top object on stack: illegal if stack
i mnpwl. mput: None: (hetput: E.

Lopd ): Return the object at the top of the stack, but do not
remove it; illegal if stack is empty?. feput: None; Output: B,

| AN TTT T TR |

= ]

A e 15 & container capable of holding a number of ohjects
subject to o FIFO [first-in, lirst-out) discipline. It supports
the [ollowing operations.

cnguene(o): Insert object o ot vear of quene. fnpul: Object;

Output: None,
dequenc(): Remove and return object at fromt of quene;
leaal il quewe is emptvl. Tnput: None: Qulpul: E.
[ront{}: Return the object st the front of the guewe. but
Ao ool remove it lfegal i quene is r.'mpt_yl. Inpuel: Non;
Cutput: E.
RRTTETY E TR
An iterator provides the ability to “move forwards" throngh
a collection of itermns one by one. One can think of & “oursor”
thal indicates Lhe enrrent position. This carsor is indlially
pusitioned before the first item and advances one item Tor
each invocation of operation next,

hasMNext(): Return true if there are one or more clements
in front of the cursor.  Inpat: None: Oulput: boolean.
nextl):  Heturn Lhe element immediately in [rool ol the

cursor and advance the eursor past this item. Illeeal if cursor
is at the end of the collection'.  fnput: None: Output: E.

LOT counterpart throws sxorption.

Ldst Herators K ! S
This ADT extends ADT Theralor amd applies to List uljects
onlv. A list iterator provides the ability to “move” hack and

fuurth over the elements of o list.

hasProvions():  Return troe if there are ooe or more ele-

ienks betore the cursor, oot None, f}.'n:!pu!.‘ Lroesleain,
nextlndex():  Return the index of the element that wonld
be returned by a call to next. Wegal if no such item'.  Input;
None; Chitpud: int.

previous():  Heturn the element immediately betore the
eursor and neve eursor in front of clement, Mogal i ne suel
item'. frput: None: Quiput: E.

proviousindex():  Return the index of the element that
woitld be rebirned by a call to previons. legal if oo suel
it

fapul; None; Owlpul: inl.

nrdd (0); Add element o to the list at the current, cursor posi-
tiom, t.e. immediately after the enreent cursor position.  In-
put: E; Chtput: None.

set{o]: Replace the clement most recently retucned (by gexe
or previous) with o, feput: E; Owtput: None,

remove| ): Remove from underlying st the element, most re-
eenlly returned {by next or provions)
MNone.

Fnpul: Note: Chatpacd:
N[It.c:. T i bl b e pevernl [Betebmpe vawed Clar snsn (baf wlojecr By | { -

itoaston fue medified 1hia L {idimg opcarenn romsvn, say b alb achor e e S

list L=

tor EnamasEe ), thon &I Imeritiors afedinsad o thar et bees oaus lavsldil

i = -
A Tist s 2 rontainer capable of holding an ordered arrange-
tetit of elements, The mder of we eloent 15 the muber of
elements that preceed it in the list,

pet{inx):  Return the clement at specilied ndex. Dlegal if

Ingrck: int; Chetput: B,
set{imx, newEIt):  Replace the element ab specilied fmlex
with newElt. Return the old element al Lhat ioecdesx. THeaal if
no such index exists!,  freput: int, E; Output: E.
add{ncwilt):  Add clement newkElL at ihe end of the st
Input: 1 Chelput: None.
aclel{inx, newFEN )

ne such index exists!,

Al elernent wew I Ler Clees Dist ot sl

inx. IMegal if inx is negative or greater than coarrent list size!.

friput: int, E: Chatgat: Noe,
removelinx ) Bemove the element at the apecified fndex

from the list and return it. [legal if no such index exists®.
Frepraet: gy, Output: E.

tterator():  Return an iterator of the elements of this list.
Treprts None: Output: Trerator< B,

listlteratori}; Relurn a lsl ilecalor of the elements in (his
list <. [mpui; Wone; Outpul; ListIterator< E=,

3 "
=Ma wach aperaton in (3T Fmnlation

Page 4 of 5



[ v 15 l = ;

A comparator proviles a means of performing comparions
between abjects of a particular type. It supports the Tollowing
operation.

compare(e. b): Return an inleger @ such that 2 < 0 il a < b,
i Dl —>bandi=00a>b Negal if @ and b cannot be
compared . fnpul: B E; Oulpnl: int.

Chianpaurafaar .

LR T |
A entry encapsulatis a key and vatue, both of type Objeet.
[t supports Lhe [ollowing operations.

VT by

gethey(): Retorn the key contained o fhis cutree Inpud;
None; Cubput K.

getValue): Return the value contained in this entry, gt
MNone; Chtpret: V.
[."n.lll alapra K, N _
A nap is a container capable of holding a number of entries,
Each entry is o key-value pair. Key values must be distinet.
It supports the following vperations,

get{k); If map contains an entry with key equal to &, then
return the value of that entry, clse return mall, Feputs K
Chutpet: V.

pub{lk, v): If the map does not have an entry with key equal
to k. acld entry (k. e) and return ol else. replace with o the
existing value of the entry and return its old value. feput: K,
V; Ondput: V.

remove(k): Remove rom the map the entry with key equal
o & and rotuen ies value: i there is no such entry, Teturn null.
Inpat: I Output: V.

iterator(): Return an iterator of the cotrics stored in the

map’, Mmput: None; Ouiput: Iterator< Enfry< K, V> =

TN Position F -
NS —_—T

A position represents a “phace” within a tree (Lo, o node); i

containg mn element (of type 1} and supports the tollowing

aperation.

eloment(): Return Lhe element stored at this position. fn-
put; None; Chidput: B
| ADT Treo. 1= !
A tree i a container capable of holding a number of positions
(nodes) on which a parent-child relationship s defined. Tt
supports the following operations.

root{}: Return the rout of 75 illegal if T cupty!,  frput:
Meme; Oudpit: Position< =,

parent{n]: Return the parent of node v illegal if v is root’.
Mgl TPosition< B>, Oufput: Position< 2,

ehildreniv): Keturn an iterator of the children of node o
Frepreds Position< B =5 Chedpads Therator< Position< B> >,
i=lnternallvd: Return boolean indicating if node o is inter-
nal. Mmpul; Position< E>: Outpnl: boolean.

islxternall <) Hetnrn boolean indicating if node v 35 a lead,
Feput: Position-< B> Output; boolean.

isfoot!{r]: Return boolean indicating if node v s the reot
Input: Position= E>; Output; hoolean.

iterator(): Return an iterator of the pusitions{nodes) of T2,
replace| i e): Replace the element stored at node v with e
aneh peturn the old element. Mapt: Position< B, 1 Outpat:
I

A0rperation diflevs frot counterpart in (3L formulation

I_‘.I _fl_ "lj:ili'":"\ Freei- !
& Binary trec is an exlension ol a tree in which each non-leafl
has at, most two children. Objects of type ADT Binary Tree
support the operations of the latter type plus the following
nitedilional operations.

leeFt{sr): [Return the left child of o illegal if v has oo lefu child!,
Mmput: Position< B> Oufpul: Position< B>,

vighti»} Return the vight child of of illegal if ¢ has oo nght
child!'. Mnput: Position= B >; (huetput; Position< K>,
Thasleft Retirn crme if o b o left eliild, false otberwise,
inputs Position< E>; Chupul: boolean.

hasRight{v]: Return true if » has a right child, false other-

wise, Inpnt: Position< B> htpad: hoolean,

ALY Prioeity Queae- KGN LT

A priovity quene is a container capable of holding a mumber
of entries. Bach entry is a key-value pair; keys need not be
distinct. It supports the following oporations.

insert{k, e Insert o new entry with key & and value e tito
the priority quene and relarn the new enley, fnpui: K,V
Chutput: Entry.

min{}:  Return, but do not remove, an entry in the prior-
ity queue with the stallest Jey, Tlepal il pricely gueue is
cinptyt. Tapuds None, Owubpuf: Faokey.

removebing ;. Remove aned return an eulry in the prior-
ity cuene with the swallest key Hlegal iF priority queue is
emphy’. fmpel: None; Chlpul: Entry.

| T 41

add({newElement):  Add the specified clement 1o this set
i[(it 1% not already present. IF Lhis set already . contoins the
specified element, the call leaves this set unchanged  Input;
E; thufpriet: None.

contains|{cheekBlement):  Return troe i Lhis sel contains
the specified element e i checkElement is a menher of this
sel.  Mmput: B Chitpeets hoolenn.

remove(remBElement):  Remove the specified elemenl
[rom Lhis set il 1), is present,  foput: B: Outpuet: None,
addAll{addSet): Add all of the elements in the set addSet
tes this set if the are not alveady present. The addAll operation
effectively modifies this set so that its new value is the union
of the two sets, Tnpad: Sot< B Output: Nooe,
containsAlllchicekSet):  Return Lroe if this set contains
all of the elements of the specified set e returns true i
checkSet is a subsel, of this sel. fepuly Sel< B> Guipal
boolean.
removeAll{remSet):  Remove from this set all of its ol
ements that nre contained in the specified set. This opera-
tion effectively modifies this set so that its new value is the
asymmetrie set difference of the two sets.  Inpul: Set<Ex:
Clutput; Nome.

retainAll(redSet):  Retain only the elements in Lhis sel
that ave coutained i the specitied set. This operation vfec-
Lively medilies this set so thal ks new value is the interseclion
of the two sets.  feput: Set< E = Outpul: None.
iterator(): [teturn an iterator of the clements in chis set.
The elements are returned in no particnlar order,  Inpui:

None futput; Teerator< F=.

Page 5 0f 5



PLEASE DO NOT
TURN THIS PAGE
UNTIL INSTRUCTED
TO DO SO

THEN
ENSURE THAT YOU
HAVE THE CORRECT

EXAM PAPER




